Prediction of Radical Scavenging Activities of Anthocyanins Applying Adaptive Neuro-Fuzzy Inference System (ANFIS) with Quantum Chemical Descriptors
نویسندگان
چکیده
Radical scavenging activity of anthocyanins is well known, but only a few studies have been conducted by quantum chemical approach. The adaptive neuro-fuzzy inference system (ANFIS) is an effective technique for solving problems with uncertainty. The purpose of this study was to construct and evaluate quantitative structure-activity relationship (QSAR) models for predicting radical scavenging activities of anthocyanins with good prediction efficiency. ANFIS-applied QSAR models were developed by using quantum chemical descriptors of anthocyanins calculated by semi-empirical PM6 and PM7 methods. Electron affinity (A) and electronegativity (χ) of flavylium cation, and ionization potential (I) of quinoidal base were significantly correlated with radical scavenging activities of anthocyanins. These descriptors were used as independent variables for QSAR models. ANFIS models with two triangular-shaped input fuzzy functions for each independent variable were constructed and optimized by 100 learning epochs. The constructed models using descriptors calculated by both PM6 and PM7 had good prediction efficiency with Q-square of 0.82 and 0.86, respectively.
منابع مشابه
Adaptive Neuro-Fuzzy Inference System Applied QSAR with Quantum Chemical Descriptors for Predicting Radical Scavenging Activities of Carotenoids
One of the physiological characteristics of carotenoids is their radical scavenging activity. In this study, the relationship between radical scavenging activities and quantum chemical descriptors of carotenoids was determined. Adaptive neuro-fuzzy inference system (ANFIS) applied quantitative structure-activity relationship models (QSAR) were also developed for predicting and comparing radical...
متن کاملPrediction of toxicity of aliphatic carboxylic acids using adaptive neuro-fuzzy inference system
Toxicity of 38 aliphatic carboxylic acids was studied using non-linear quantitative structure-toxicityrelationship (QSTR) models. The adaptive neuro-fuzzy inference system (ANFIS) was used to construct thenonlinear QSTR models in all stages of study. Two ANFIS models were developed based upon differentsubsets of descriptors. The first one used log ow K and LUMO E as inputs and had good predicti...
متن کاملDetermination of water quality parameters and nutrient level with an Adaptive Neuro- Fuzzy Inference System
In this research, the physico-chemical water quality parameters and the effect of climate changes onwater quality is evaluated. During the observation period (5 months) physico-chemical parameterssuch as water temperature, turbidity, saturated oxygen, dissolved oxygen, pH, chlorophyll-a, salinity,conductivity, and concentration of total nitrogen (nutrient level) as main pollutant factor have be...
متن کاملAdaptive Network-based Fuzzy Inference System-Genetic Algorithm Models for Prediction Groundwater Quality Indices: a GIS-based Analysis
The prediction of groundwater quality is very important for the management of water resources and environmental activities. The present study has integrated a number of methods such as Geographic Information Systems (GIS) and Artificial Intelligence (AI) methodologies to predict groundwater quality in Kerman plain (including HCO3-, concentrations and Electrical Conductivity (EC) of groundwater)...
متن کاملImplementation of Adaptive Neuro-Fuzzy Inference System (Anfis) for Performance Prediction of Fuel Cell Parameters
Fuel cells are potential candidates for storing energy in many applications; however, their implementation is limited due to poor efficiency and high initial and operating costs. The purpose of this research is to find the most influential fuel cell parameters by applying the adaptive neuro-fuzzy inference system (ANFIS). The ANFIS method is implemented to select highly influential parame...
متن کامل